Group Leader
The main objective of our research group is the characterization of potential drug targets, from their identification to deciphering their mechanisms of action and roles in physiology and infection, for application in the context of improving anti-tuberculosis therapy. Our research includes better understanding of metabolic pathways and enzymes involved in cell envelope lipid biogenesis in Mycobacterium tuberculosis.
Our team focuses on metabolic pathways of mycobacterial envelope lipids in order to characterize new targets and design innovative therapeutic agents to face antibiotic resistance in tuberculosis.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death worldwide. The rise in drug resistance highlights the urgent need for novel anti-TB drug development. We use interdisciplinary approaches to develop various aspects of early-stage drug discovery, ranging from identification to exploitation of promising anti-TB targets with significant pharmaceutical interest to develop novel molecules with unexplored modes of action. Our expertise relies on complementary approaches in structural and quantitative biochemistry of lipids and glycoconjugates, microbiology, molecular biology, protein biotechnology and enzymology, enzyme assay development and target validation.
In this context, our main findings include:
The characterization and inhibition of enzymes involved in cell envelope biogenesis
Mycobacterial envelope is unique in the bacterial world, both in terms of composition, consisting of structurally exotic compounds, and their arrangement, including the occurrence of an outer and inner membranes. Targeting enzymes involved in cell envelope biosynthesis has been of major interest for anti-TB drug discovery. Our approach is illustrated here through the study of FAAL32, a fatty acyl-AMP ligase and a potential target, involved in the biosynthesis of the cell wall very long-chain fatty acids called mycolic acids. To validate this protein as a druggable target, we initiated a drug repurposing campaign and screened a collection of 1280 approved drugs (Prestwick Chemical Library) using a biochemical assay that reads out FAAL32 inhibition. These efforts led to discovery of salicylanilide closantel, and some of its derivatives as inhibitors with potent in vitro activity against Mtb. These results suggest that salicylanilide represent a potentially promising pharmacophore for the conception of novel anti-tubercular candidates that would open new targeting opportunities.
The structural and functional characterization of antibiotic-activating enzymes
Many anti-TB drugs require bioactivation, notably by Baeyer-Villiger monooxygenases (BVMOs). Despite their emerging importance, BVMO structural and functional features remain enigmatic. Combining in silico characterization with in vitro protein activity validation, we recently outlined structural framework and substrate preference of Mtb BVMO enzymes. These features ground the molecular basis for structure-function comprehension of the specificity in these enzymes and open for expansion of the repertoire of BVMO substrates, including prodrugs.
We also investigate the physiological roles and the functional relevance of the BVMO proteins in Mtb adaptation and resistance to stress conditions. We use genetically-modified mycobacteria and phenotypic and lipidomics characterizations to asses induced changes and cell envelope remodeling under stress conditions.
The development of bioinspired molecules for antituberculosis drug development
The increasing emergence of multi- and extremely-drug resistant Mtb to current treatment calls for the urgent need to develop novel chemical series of anti-TB drugs acting on original targets. Building on recent evidence, we propose that bioinspired lipids – based on compounds isolated from medicinal plants – represent a new class of anti-TB molecules with new mechanisms of action. In collaboration with chemistry groups, we are developing an inter-disciplinary approach to improve their activity against Mtb as well as other pathogenic mycobacteria, including Mycobacterium abscessus, and their pharmacokinetic properties while decreasing their cytotoxicity.
Anne Lemassu (University)
Hedia Marrakchi (CNRS)
Patricia Constant (CNRS)
Léa Masson
Martin Campoy
Dimitri Leonelli
Chloé Garcia
Chérine Mehalla
Rathies Ravindra
Tomas*, Leonelli* et al. (2022) Bioinformatic Mining and Structure-Activity Profiling of Baeyer-Villiger Monooxygenases from Mycobacterium tuberculosis. mSphere
Le et al. (2022) Drug screening approach against mycobacterial fatty acyl-AMP ligase FAAL32 renews the interest of the salicylanilide pharmacophore in the fight against tuberculosis. Bioorg Med Chem
Lanéelle et al. (2021) Lipid and Lipoarabinomannan Isolation and Characterization. Methods Mol Biol
Le et al. (2020) The protein kinase PknB negatively regulates biosynthesis and trafficking of mycolic acids in mycobacteria. J Lipid Res
Daffé, Marrakchi (2019) Unraveling the Structure of the Mycobacterial Envelope. Microbiol Spectr
Chiaradia et al. (2017) Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep
• European Molecular Biology Laboratory Hamburg, Germany: Matthias Wilmanns
• Institute of Medical Biology – Polish Academy of Sciences, Lodz, Poland : Przemyslaw Plocinski
• University of Padova, Italy : Roberta Provvedi ; Riccardo Manganelli
• Comenius University, Bratislava, Slovak Republic: Jana Korduláková
• Université Libre de Bruxelles : Véronique Fontaine
• SCRIPPS Institute, University of Florida : Luiz Pedro de Carvalho
• Institut Pasteur, Paris : Roland Brosch ; Pedro Alzari ; Marco Bellinzoni
• Institut Pasteur Lille/Université de Lille : Alain Baulard ; Nicolas Willand
• MaiAGE, INRAE, Jouy-en-Josas : Gwenaëlle André
• Université Paris XI, Orsay : Nicolas Bayan
• Université Grenoble Alpes : Pierre Verhaeghe
• UMR Infectiologie et Santé Publique, INRAE Tours-Nouzilly : Franck Biet
• Laboratoire Pathogen-Host Interactions, Montpellier : Virginie Molle
• Laboratoire de chimie de coordination LCC, Toulouse: Vania Bernardes-Génisson
• Laboratoire de synthèse et physico-chimie de molécules d’intérêt biologique SPCMIB, Toulouse : Yves Génisson
• Laboratoire Génie Chimique Toulouse : Fatima El Garah
• Lionel Mourey
• Odile Schiltz
• Olivier Saurel/Andrew Atkinson
• Sébastien Britton
• Matthieu Chavent
• PICT platform
Our team is or has been supported in the five past years by grants or fellowships from:
• Agence Nationale de la Recherche (ANR)
• ANRS-Maladies Infectieuses Emergentes (ANRS|MIE)
• MSDAvenir
• Mission pour les Initiatives Transverses et Interdisciplinaires CNRS 80 PRIME et Modélisation du Vivant (Mission pour les Initiatives Transverses et Interdisciplinaires
• Université Paul Sabatier de Toulouse
• Fondation Roland Garrigou
• Partenariat Hubert Curien (Partenariats Hubert Curien (PHC) | Campus France)
The complete list of our publications is available through Pubmed.
Tomas*, N., Leonelli*, D., Campoy, M., Marthey, S., Le, N.-H., Rengel, D., Martin, V., Pál, A., Korduláková, J., Eynard, N., Guillet, V., Mourey, L., Daffé, M., Lemassu*, A., André, G*., Marrakchi*, H. (2022). Bioinformatic Mining and Structure-Activity Profiling of Baeyer-Villiger Monooxygenases from Mycobacterium tuberculosis. MSphere, e0048221 (view)
Le, N.-H., Constant, P., Tranier, S., Nahoum, V., Guillet, V., Maveyraud, L., Daffé, M., Mourey, L., Verhaeghe, P., Marrakchi, H. (2022). Drug screening approach against mycobacterial fatty acyl-AMP ligase FAAL32 renews the interest of the salicylanilide pharmacophore in the fight against tuberculosis. Bioorganic & Medicinal Chemistry, 71, 116938 (view)
Boldrin, F., Cioetto Mazzabò, L., Lanéelle, M.-A., Rindi, L., Segafreddo, G., Lemassu, A., Etienne, G., Conflitti, M., Daffé, M., Garzino Demo, A., Manganelli, R., Marrakchi, H., Provvedi, R. (2022). LysX2 is a Mycobacterium tuberculosis membrane protein with an extracytoplasmic MprF-like domain. BMC Microbiology 22, 85 (view)
Schahl, A., Lemassu, A., Jolibois, F., Réat, V. (2022). Evidence for amylose inclusion complexes with multiple acyl chain lipids using solid-state NMR and theoretical approaches. Carbohydrate Polymers 276, 118749 (view)
Lanéelle, M.-A., Spina, L., Nigou, J., Lemassu, A., Daffé, M. (2021). Lipid and Lipoarabinomannan Isolation and Characterization. Methods in Molecular Biology (Clifton, N.J.) 2314, 109–150 (view)
Le, N.-H., Locard-Paulet, M., Stella, A., Tomas, N., Molle, V., Burlet-Schiltz, O., Daffé, M., Marrakchi, H. (2020). The protein kinase PknB negatively regulates biosynthesis and trafficking of mycolic acids in mycobacteria. Journal of Lipid Research, 61(8), 1180–1191 (view)
Eynard, N., Daffé, M., Brosch, R., Quémard, A. (2020). Discovery of a novel dehydratase of the fatty acid synthase type II critical for ketomycolic acid biosynthesis and virulence of Mycobacterium tuberculosis. Scientific Reports 10, 2112 (view)
Zeng, S., Constant, P., Yang, D., Baulard, A., Lefèvre, P., Daffé, M., Wattiez, R., Fontaine, V. (2019). Cpn60.1 (GroEL1) Contributes to Mycobacterial Crabtree Effect: Implications for Biofilm Formation. Frontiers in Microbiology 10, 1149 (view)
Daffé, M., Marrakchi, H. (2019). Unraveling the Structure of the Mycobacterial Envelope. Microbiology Spectrum 7 (view)
Madacki, J., Laval, F., Grzegorzewicz, A., Lemassu, A., Záhorszká, M., Arand, M., McNeil, M., Daffé, M., Jackson, M., Lanéelle, M.-A., Korduláková, J. (2018). Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria. The Journal of Biological Chemistry 293, 5172–5184 (view)
Lefebvre, C., Boulon, R., Ducoux, M., Gavalda, S., Laval, F., Jamet, S., Eynard, N., Lemassu, A., Cam, K., Bousquet, M.-P., Bardou, F., Burlet-Schiltz, O., Daffé, M., Quémard, A. (2018). HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness. Scientific Reports 8, 6034 (view)
Bannantine, J. P., Etienne, G., Laval, F., Stabel, J. R., Lemassu, A., Daffé, M., Bayles, D. O., Ganneau, C., Bonhomme, F., Branger, M., Cochard, T., Bay, S., Biet, F. (2017). Cell wall peptidolipids of Mycobacterium avium: From genetic prediction to exact structure of a nonribosomal peptide. Molecular Microbiology 105, 525–539 (view)
Bazet Lyonnet, B., Diacovich, L., Gago, G., Spina, L., Bardou, F., Lemassu, A., Quémard, A., Gramajo, H. (2017). Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits. The FEBS Journal 284, 1110–1125 (view)
Issa, H., Huc-Claustre, E., Reddad, T., Bonadé Bottino, N., Tropis, M., Houssin, C., Daffé, M., Bayan, N., Dautin, N. (2017). Click-chemistry approach to study mycoloylated proteins: Evidence for PorB and PorC porins mycoloylation in Corynebacterium glutamicum. PloS One 12, e0171955 (view)
Carel, C., Marcoux, J., Réat, V., Parra, J., Latgé, G., Laval, F., Demange, P., Burlet-Schiltz, O., Milon, A., Daffé, M., Tropis, M. G., Renault, M. A. M. (2017). Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane. Proceedings of the National Academy of Sciences of the United States of America 114, 4231–4236 (view)
Chiaradia, L., Lefebvre, C., Parra, J., Marcoux, J., Burlet-Schiltz, O., Etienne, G., Tropis, M., Daffé, M. (2017). Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Scientific Reports 7, 12807 (view)
Daffé, M. (2015). The cell envelope of tubercle bacilli. Tuberculosis (Edinburgh, Scotland), 95 Suppl 1, S155-158 (view)
Boritsch, E. C., Frigui, W., Cascioferro, A., Malaga, W., Etienne, G., Laval, F., Pawlik, A., Le Chevalier, F., Orgeur, M., Ma, L., Bouchier, C., Stinear, T. P., Supply, P., Majlessi, L., Daffé, M., Guilhot, C., Brosch, R. (2016). Pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nature Microbiology 1, 15019 (view)
Guillet, V., Galandrin, S., Maveyraud, L., Ladevèze, S., Mariaule, V., Bon, C., Eynard, N., Daffé, M., Marrakchi, H., Mourey, L. (2016). Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria. The Journal of Biological Chemistry 291, 7973–7989 (view)
Le, N.-H., Molle, V., Eynard, N., Miras, M., Stella, A., Bardou, F., Galandrin, S., Guillet, V., André-Leroux, G., Bellinzoni, M., Alzari, P., Mourey, L., Burlet-Schiltz, O., Daffé, M., Marrakchi, H. (2016). Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis. The Journal of Biological Chemistry 291, 22793–22805 (view)
Burbaud, S., Laval, F., Lemassu, A., Daffé, M., Guilhot, C., Chalut, C. (2016). Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria. Cell Chemical Biology 23, 278–289 (view)
Slama, N., Jamet, S., Frigui, W., Pawlik, A., Bottai, D., Laval, F., Constant, P., Lemassu, A., Cam, K., Daffé, M., Brosch, R., Eynard, N., Quémard, A. (2016). The changes in mycolic acid structures caused by hadC mutation have a dramatic effect on the virulence of Mycobacterium tuberculosis. Molecular Microbiology 99, 794–807 (view)
Jamet, S., Quentin, Y., Coudray, C., Texier, P., Laval, F., Daffé, M., Fichant, G., Cam, K. (2015). Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis. Journal of Bacteriology 197, 3797–3811 (view)
Jamet, S., Slama, N., Domingues, J., Laval, F., Texier, P., Eynard, N., Quémard, A., Peixoto, A., Lemassu, A., Daffé, M., Cam, K. (2015). The Non-Essential Mycolic Acid Biosynthesis Genes hadA and hadC Contribute to the Physiology and Fitness of Mycobacterium smegmatis. PloS One 10, e0145883 (view)
Ehebauer, M. T., Zimmermann, M., Jakobi, A. J., Noens, E. E., Laubitz, D., Cichocki, B., Marrakchi, H., Lanéelle, M.-A., Daffé, M., Sachse, C., Dziembowski, A., Sauer, U., Wilmanns, M. (2015). Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism. PLoS Pathogens 11, e1004623 (view)
Daffé, M., Crick, D. C., Jackson, M. (2014). Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids. Microbiology Spectrum 2, MGM2-0021–2013 (view)
Marrakchi, H., Lanéelle, M.-A., Daffé, M. (2014). Mycolic acids: Structures, biosynthesis, and beyond. Chemistry & Biology 21, 67–85 (view)
Moura-Alves, P., Faé, K., Houthuys, E., Dorhoi, A., Kreuchwig, A., Furkert, J., Barison, N., Diehl, A., Munder, A., Constant, P., Skrahina, T., Guhlich-Bornhof, U., Klemm, M., Koehler, A.-B., Bandermann, S., Goosmann, C., Mollenkopf, H.-J., Hurwitz, R., Brinkmann, V., Fillatreau, S., Daffé, M., … Kaufmann, S. H. E. (2014). AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512, 387–392 (view)
Rienksma, R. A., Suarez-Diez, M., Spina, L., Schaap, P. J., Martins dos Santos, V. A. P. (2014). Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Seminars in Immunology 26, 610–622 (view)
Gavalda, S., Bardou, F., Laval, F., Bon, C., Malaga, W., Chalut, C., Guilhot, C., Mourey, L., Daffé, M., Quémard, A. (2014). The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chemistry & Biology 21, 1660–1669 (view)
Galandrin, S., Guillet, V., Rane, R. S., Léger, M., N, R., Eynard, N., Das, K., Balganesh, T. S., Mourey, L., Daffé, M., Marrakchi, H. (2013). Assay development for identifying inhibitors of the mycobacterial FadD32 activity. Journal of Biomolecular Screening 18, 576–587 (view)
Gavalda, S., Léger, M., van der Rest, B., Stella, A., Bardou, F., Montrozier, H., Chalut, C., Burlet-Schiltz, O., Marrakchi, H., Daffé, M., Quémard, A. (2009). The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. The Journal of Biological Chemistry 284, 19255–19264 (view)
Lefebvre, C., Frigui, W., Slama, N., Lauzeral-Vizcaino, F., Constant, P., Lemassu, A., Parish, T., Léger, M., Gavalda, S., Guillet, V., van der Rest, B., Slama, N., Montrozier, H., Mourey, L., Quémard, A., Daffé, M., Marrakchi, H. (2009). The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Chemistry & Biology 16, 510–519 (view)
• Pascaline Bories-Lafont, post-doctoral fellow, CHU Québec-Université Laval, Quebec
• Nicolas Tomas, post-doctoral fellow, TWB, France
• Laura Chiaradia, Analytical Engineer, Centre Hospitalier Territorial, New Caledonia
• Nguyen-Hung Le, post-doctoral fellow, Marseille, France
• Richard Boulon, post-doctoral fellow, INRS institute, Quebec
• Cyril Lefebvre, Unit Manager, Dubernet Rhône, France
• Mathieu Leger, Quality Manager, iNOVie, France
• Julien Vaubourgeix, Lecturer, Imperial College, London, UK
• Tounkang Sambou, Unit Manager, Senegal
• Nawel Slama, Project Manager, TWB, France
• Emilie Huc, Research Scientist, Evotec, France
• Premkumar Dinadayala, Research Scientist, Evotec, France
• Emmanuelle Sacco, Clinical Research Project Manager, CHU, France
• Jean-Clément Mars, Post-doctoral fellow, Laval, Québec
• Brahim Saffiedine, Product Manager, Senegal
• Lucie Spina, Analytical Chemist, Clariant Active Ingredients, France
• Sabine Gavalda, Biophysics Engineer, Carbios, France
• Ségolène Galandrin, Project Manager, CHU, France