Responsable d'équipe
Notre principal objectif est de déchiffrer le dialogue moléculaire qui s’établit entre Mycobacterium tuberculosis et les cellules immunitaires de l’hôte pendant l’infection. Nous nous attachons à comprendre le rôle et les relations structure-fonction des lipides et des glycoconjugués de l’enveloppe cellulaire dans la reconnaissance immunitaire innée des mycobactéries et la stimulation des cellules T restreintes par le CD1.
Nous combinons des approches multidisciplinaires pour déchiffrer et exploiter les propriétés immunomodulatrices des lipides et des glycoconjugués de Mycobacterium tuberculosis (lipides et glycoconjugués).
Nous utilisons une approche multidisciplinaire combinant la lipidomique, la microbiologie, la biologie cellulaire et l’expérimentation animale pour explorer au niveau moléculaire plusieurs facettes de l’interaction hôte-pathogène. De plus, nous souhaitons traduire ces connaissances fondamentales en nouvelles stratégies/outils thérapeutiques, préventifs ou diagnostiques à évaluer.
Modulation de la réponse immunitaire innée
Mycobacterium tuberculosis (Mtb) inhibe la réponse immunitaire innée, y compris l’inflammation et l’autophagie, favorisant ainsi sa survie dans l’hôte infecté. Nos objectifs sont de découvrir les bases moléculaires de la reconnaissance de Mtb par les récepteurs de reconnaissance de motifs moléculaires (PRR), y compris les TLR et les lectines de type C, et d’identifier les facteurs de Mtb qui modulent la fonction des macrophages. De plus, nous souhaitons caractériser le trafic des lipides de Mtb dans les vésicules extracellulaires et le remodelage du lipidome de Mtb pendant l’infection.
Présentation d’antigènes glycolipidiques aux cellules T restreintes par CD1
Les lipides et les glycolipides sont des antigènes importants qui induisent des réponses immunitaires spécifiques médiées par les cellules T CD1. Nous souhaitons définir le répertoire des épitopes lipidiques de Mtb, caractériser les étapes et mécanismes moléculaires de leur présentation par les cellules présentatrices d’antigènes et évaluer l’efficacité protectrice de ces lipides antigéniques dans des modèles animaux d’infection par Mtb.
Définitions structurale et fonctionnelle du glycoprotéome de Mtb
Nous avons précédemment démontré que la O-mannosylation des protéines est cruciale pour la virulence de Mtb. Nos objectifs sont d’identifier et de déchiffrer les rôles des mannoprotéines contribuant à la persistance de Mtb, in vivo, et de comprendre les relations structure/fonction de la protéine-O-mannosyl transférase afin de guider des stratégies d’inhibition.
Emeline Fabre (MCU, UPS)
Martine Gilleron (DR2, CNRS)
Emilie Layre (CR, CNRS)
Jérôme Nigou (DR1, CNRS)
Michel Rivière (DR2, CNRS)
Alain Vercellone (MCU HC, UPS)
Isabelle Vergne (CR HC, CNRS)
Florian Boullée
Hanamée Faugeras
Marion Horta
Sébastien Nicolas
Sophie Zuberogoitia (IE, CNRS)
Albertus Viljoen
Sonia Belkai
Tamara Mičková
Héctor Mayoral Reyes
Chloé Rivière
Viljoen et al. (2023) Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. Sci Adv
Mosquera-Restrepo et al. (2022) A Mycobacterium tuberculosis fingerprint in human breath allows tuberculosis detection. Nat Commun
Blanc et al. (2017) Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc Natl Acad Sci USA
Decout et al. (2017) Rational design of adjuvants targeting the C-type lectin Mincle. Proc Natl Acad Sci USA
Gilleron et al. (2016) Lysosomal lipases PLRP2 and LPLA2 process mycobacterial multiacylated lipid antigens and generate T cell stimulatory antigens. Cell Chem Biol
Liu, Tonini et al. (2013) Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA
The complete list of our publications is available through Pubmed
Viljoen, A., Vercellone, A., Chimen, M., Gaibelet G., Mazères, S, Nigou, J., Dufrêne, Y.F. (2023) Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. Sci Adv 9, eadf9498 (View)
Mosquera-Restrepo, S.F., Zuberogoitia, S., Gouxette, L., Layre, E., Gilleron, M., Stella, A., Rengel, D., Burlet-Schiltz, O., Caro, A.C., Garcia, L.F., Segura, C., Pelaez Jaramillo, C.A., Rojas, M., Nigou, J. (2022) A Mycobacterium tuberculosis fingerprint in human breath allows tuberculosis detection. Nat Commun 13, 7751 (View)
Bah, A., Sanicas, M., Nigou, J., Guilhot, C., Astarie-Dequeker, C., Vergne, I. (2020) The Lipid Virulence Factors of Mycobacterium tuberculosis Exert Multilayered Control over Autophagy-Related Pathways in Infected Human Macrophages. Cells 9, 666 (View)
Blanc, L., Gilleron, M., Prandi, J., Song, O.R., Jang, M.S., Gicquel, B., Drocourt, D., Neyrolles, O., Brodin, P., Tiraby, G., Vercellone, A., Nigou, J. (2017) Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc Natl Acad Sci USA 114, 11205-11210 (View)
Decout A., Silva-Gomes S., Drocourt D., Barbe S., André I., Cueto F.J., Lioux T., Sancho D., Pérouzel E., Vercellone A., Prandi J., Gilleron M., Tiraby G. & Nigou J. (2017) Rational design of adjuvants targeting the C-type lectin Mincle. Proc Natl Acad Sci USA 114, 2675-2680 (View)
Blattes, E., Vercellone, A., Eutamene, H., Turrin, C.O., Theodorou, V., Majoral, J.P., Caminade, A.M., Prandi, J., Nigou, J., Puzo, G. (2013) Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proc Natl Acad Sci USA 110, 8795-8800 (View)
Liu, C.F., Tonini, L., Malaga, W., Beau, M., Stella, A., Bouyssie, D., Jackson, M.C., Nigou, J., Puzo, G., Guilhot, C., Burlet-Schiltz, O., Riviere, M. (2013) Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110, 6560-6565 (View)
Gilleron, M., Lepore, M., Layre, E., Cala-De Paepe, D., Mebarek, N., Shayman, J.A., Canaan, S., Mori, L., Carriere, F., Puzo, G., De Libero, G. (2016) Lysosomal Lipases PLRP2 and LPLA2 Process Mycobacterial Multi-acylated Lipids and Generate T Cell Stimulatory Antigens. Cell Chem Biol 23, 1147-1156 (View)
Garcia-Alles, L.F., Collmann, A., Versluis, C., Lindner, B., Guiard, J., Maveyraud, L., Huc, E., Im, J.S., Sansano, S., Brando, T., Julien, S., Prandi, J., Gilleron, M., Porcelli, S.A., de la Salle, H., Heck, A.J., Mori, L., Puzo, G., Mourey, L., De Libero, G. (2011) Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids. Proc Natl Acad Sci USA 108, 17755-17760 (View)
Guiard, J., Collmann, A., Gilleron, M., Mori, L., De Libero, G., Prandi, J., Puzo, G. (2008) Synthesis of diacylated trehalose sulfates: candidates for a tuberculosis vaccine. Angew Chem Int Ed Engl 47, 9734-9738 (View)
De la Salle, H., Mariotti, S., Angenieux, C., Gilleron, M., Garcia-Alles, L.F., Malm, D., Berg, T., Paoletti, S., Maitre, B., Mourey, L., Salamero, J., Cazenave, J.P., Hanau, D., Mori, L., Puzo, G., De Libero, G. (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310, 1321-1324 (View)
Gilleron, M., Stenger, S., Mazorra, Z., Wittke, F., Mariotti, S., Bohmer, G., Prandi, J., Mori, L., Puzo, G., De Libero, G. (2004) Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199, 649-659 (View)
Tonini, L., Sadet, B., Stella, A., Bouyssie, D., Nigou, J., Burlet-Schiltz, O., Riviere, M. (2020) Potential Plasticity of the Mannoprotein Repertoire Associated to Mycobacterium tuberculosis Virulence Unveiled by Mass Spectrometry-Based Glycoproteomics. Molecules 25, 2348 (View)
Vetizou, M., Pitt, J.M., Daillere, R., Lepage, P., Waldschmitt, N., Flament, C., Rusakiewicz, S., Routy, B., Roberti, M.P., Duong, C.P., Poirier-Colame, V., Roux, A., Becharef, S., Formenti, S., Golden, E., Cording, S., Eberl, G., Schlitzer, A., Ginhoux, F., Mani, S., Yamazaki, T., Jacquelot, N., Enot, D.P., Berard, M., Nigou, J., Opolon, P., Eggermont, A., Woerther, P.L., Chachaty, E., Chaput, N., Robert, C., Mateus, C., Kroemer, G., Raoult, D., Boneca, I.G., Carbonnel, F., Chamaillard, M., Zitvogel, L. (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079-1084 (View)
Larrouy-Maumus, G., Skovierova, H., Dhouib, R., Angala, S.K., Zuberogoitia, S., Pham, H., Villela, A.D., Mikusova, K., Noguera, A., Gilleron, M., Valentinova, L., Kordulakova, J., Brennan, P.J., Puzo, G., Nigou, J., Jackson, M. (2012) A small multidrug resistance-like transporter involved in the arabinosylation of arabinogalactan and lipoarabinomannan in mycobacteria. J Biol Chem 287, 39933-39941 (View)
Klionsky, D., …, Vergne, I., et al. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17:1-382 (View)
Layre, E. (2020) Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol 11, 1230 (View)
Bah, A., Vergne, I. (2017) Macrophage Autophagy and Bacterial Infections. Front Immunol 8, 1483 Pubmed (View)
Vergne, I., Lafont, F., Espert, L., Esclatine, A., Biard-Piechaczyk, M. (2017) Autophagy, ATG proteins and infectious diseases. Med Sci (Paris) 33, 312-318 Special Issue on “Autophagie”, editorial: Patrice Codogno et Guido Kroemer. (View)
Vergne, I., Gilleron, M., Nigou, J. (2014) Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol 4, 187 (View)
Layre, E., Mazurek, J., Gilleron, M. (2015) Glycolipid Presentation by CD1. In: eLS. John Wiley & Sons, Ltd: Chichester (View)
Ray, A., Cot, M., Puzo, G., Gilleron, M., Nigou, J. (2013) Bacterial cell wall macroamphiphiles: pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 95, 33-42 (View)
Kitzmiller CE, Cheng TY, Prandi J, Sparks IL, Moody DB, Morita YS. (2024) Detergent-induced quantitatively limited formation of diacyl phosphatidylinositol dimannoside in Mycobacterium smegmatis. J Lipid Res. Mar 22:100533. doi: 10.1016/j.jlr.2024.100533
Palčeková Z, De K, Angala SK, Gilleron M, Zuberogoitia S, Gouxette L, Soto-Ojeda M, Gonzalez-Juarrero M, Obregón-Henao A, Nigou J, Wheat WH, Jackson M. (2024) Impact of Methylthioxylose Substituents on the Biological Activities of Lipomannan and Lipoarabinomannan in Mycobacterium tuberculosis. ACS Infect Dis. Mar 21. doi: 10.1021/acsinfecdis.4c00079.
Lin Z, Kaniraj JP, Holzheimer M, Nigou J, Gilleron M, Hekelaar J, Minnaard AJ. (2024) Asymmetric Total Synthesis and Structural Revision of DAT2, an Antigenic Glycolipid from Mycobacterium tuberculosis. Angew Chem Int Ed Engl. Mar 8:e202318582. doi: 10.1002/anie.202318582
Eckhardt E, Schinköthe J, Gischke M, Sehl-Ewert J, Corleis B, Dorhoi A, Teifke J, Albrecht D, Geluk A, Gilleron M, Bastian M. (2023) Phosphatidylinositolmannoside vaccination induces lipid-specific Th1-responses and partially protects guinea pigs from Mycobacterium tuberculosis challenge. Sci Rep. 13:18613.
Géraud N, Falcou C, Parra J, Froment C, Rengel D, Burlet-Schiltz O, Marcoux J, Nigou J, Rivière M, Fabre E.(2023) Development of a novel target-based cell assay, reporter of the activity of mycobacterium tuberculosis protein-O-mannosyltransferase. Glycobiology. Sep 12:cwad072.
Palčeková Z, Obregón-Henao A, De K, Walz A, Lam H, Philp J, Angala SK, Patterson J, Pearce C, Zuberogoitia S, Avanzi C, Nigou J, McNeil M, Muñoz Gutiérrez JF, Gilleron M, Wheat WH, Gonzalez-Juarrero M, Jackson M. (2023) Role of succinyl substituents in the mannose-capping of lipoarabinomannan and control of inflammation in Mycobacterium tuberculosis infection. PLoS Pathog. 19:e1011636.
Nabeemeeah F, Sabet R, Moloantoa T, Waja Z, Pretorius Z, Majoro K, Letutu-Xaba M, Vilaplana C, Nigou J, Martinson N. (2023) Exhaled breath specimens subjected to point-of-care lipoarabinomannan testing. Int J Tuberc Lung Dis. 27:703-705.
Viljoen, A., Vercellone, A., Chimen, M., Gaibelet G., Mazères, S, Nigou, J., Dufrêne, Y.F. (2023) Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. Sci Adv 9, eadf9498
Aceves-Sánchez MJ, Barrios-Payán JA, Segura-Cerda CA, Flores-Valdez MA, Mata-Espinosa D, Pedroza-Roldán C, Yadav R, Saini DK, de la Cruz MA, Ares MA, Bielefeldt-Ohmann H, Baay-Guzmán G, Vergne I, Velázquez-Fernández JB, Barba León J, Hernández-Pando R. (2023) BCG∆BCG1419c and BCG differ in induction of autophagy, c-di-GMP content, proteome, and progression of lung pathology in Mycobacterium tuberculosis HN878-infected male BALB/c mice. Vaccine. May 8: S0264-410X(23)00489-9
Brown CM, Corey RA, Grélard A, Gao Y, Choi YK, Luna E, Gilleron M, Destainville N, Nigou J, Loquet A, Fullam E, Im W, Stansfeld PJ, Chavent M. (2023) Supramolecular organization and dynamics of mannosylated phosphatidylinositol lipids in the mycobacterial plasma membrane. Proc Natl Acad Sci U S A. 120 (5):e2212755120.
Abeliovich H, Debnath J, Ding WX, Jackson WT, Kim DH, Klionsky DJ, Ktistakis N, Margeta M, Münz C, Petersen M, Sadoshima J, Vergne I. (2023) Editorial: Where is the field of autophagy research heading? Autophagy. Jan 23;1-6
Mosquera-Restrepo SF, Zuberogoïtia S, Gouxette L, Layre E, Gilleron M, Stella A, Rengel D, Burlet-Schilt O, Caro AC, Garcia LF, Segura C, Peláez Jaramillo CA, Rojas M, Nigou J. (2022) A Mycobacterium tuberculosis fingerprint in human breath allows tuberculosis detection. Nat Commun. 13(1):7751.
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. (2022) Immunological hyporesponsiveness in tuberculosis: the role of mycobacterial glycolipids. Front Immunol. 13:1035122.
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. (2022) Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol. 22:00125.
Viljoen A, Dufrêne YF, Nigou J. (2022) Mycobacterial Adhesion:From Hydrophobic to Receptor-Ligand Interactions. Microorganisms. 10:454.
James CA, Xu Y, Aguilar MS, Jing L, Layton ED, Gilleron M, Minnaard AJ, Scriba TJ, Day CL, Warren EH, Koelle DM, Seshadri C. (2022) CD4 and CD8 co-receptors modulate functional avidity of CD1b-restricted T cells. Nat Commun. 13:78.
Sousa Silva C, Sundling C, Folkesson E, Fröberg G, Nóbrega C, Canto-Gomes J, Chambers B, Tadepally L, Brodin P, Bruchfeld J, Nigou J, Correia-Neves M & Källenius G. (2021) High dimensional immune profiling reveals different response patterns in active and latent TB following stimulation with mycobacterial glycolipids. Front Immunol. 12:727300.
Payros D, Alonso H, Malaga W, Volle A, Mazères S, Déjean S, Valière S, Moreau F, Balor S, Stella A, Combes-Soia L, Burlet-Schiltz O, Bouchez O, Nigou J, Astarie-Dequeker C, Guilhot C. (2021) Rv0180c contributes to Mycobacterium tuberculosis cell shape and to infectivity in mice and macrophages. PLoS Pathog. 17:e1010020.
Anso I, Basso LGM, Wang L, Marina A, Páez-Pérez ED, Jäger C, Gavotto F, Tersa M, Perrone S, Contreras FX, Prandi J, Gilleron M, Linster CL, Corzana F, Lowary TL, Trastoy B, Guerin ME. (2021) Molecular ruler mechanism and interfacial catalysis of the integral membrane acyltransferase PatA. Sci Adv. 7:eabj4565.
Jagannath C, McBride JW, Vergne I (2021) Editorial: The Autophagy Pathway: Bacterial Pathogen Immunity and Evasion. Front Immunol. 12:768935.
Layre E (2021) Targeted Lipidomics of Mycobacterial Lipids and Glycolipids. Methods Mol Biol. 2314:549.
Jøntvedt Jørgensen M, Grotle Nore K, Aass HC, Layre E, Nigou J, Mortensen R, Tasken K, Kvale D, Jenum S, Tonby K, Dyrhol-Riise AM (2021) Plasma LOX-products and monocyte signaling is reduced by adjunctive cyclooxygenase-2 inhibitor in a phase I clinical trial of tuberculosis patients. Front Cell Infect Microbiol 11:669623.
Lanéelle MA, Spina L, Nigou J, Lemassu A & Daffé M (2021) Lipid and lipoarabinomannan purification and characterization. Methods Mol Biol 2314:109.
Klionsky D, …, Vergne I, et al. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17:1-382.
Felix J, Siebert C, Novion Ducassou J, Nigou J, Garcia PS, Fraudeau A, Huard K, Mas C, Brochier-Armanet C, Couté Y, Gutsche I & and Renesto P (2021) Structural and Functional Analysis of the Francisella Lysine Decarboxylase as a Key Actor in Oxidative Stress Resistance. Sci Rep 11:972.
Marín Franco JL, Genoula M, Corral D, Duette G, Ferreyra M, Maio M, Dolotowicz MB, Aparicio-Trejo OE, Patiño-Martínez E, Charton A, Métais A, Fuentes F, Soldan V, Moraña EJ, Palmero D, Ostrowski M, Schierloh P, Sánchez-Torres C, Hernández-Pando R, Pedraza-Chaverri J, Rombouts Y, Hudrisier D, Layre E, Vérollet C, Maridonneau-Parini I, Neyrolles O, Sasiain MDC, Lugo-Villarino G, Balboa L (2020) Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Rep 33:108547.
Källenius G, Nigou J, Cooper A & Correia-Neves M (2020) Editorial: Mycobacterial Glycolipids-Role in Immunomodulation and Targets for Vaccine Development. Front Immunol 11:603900.
Camacho F, Moreno E, Garcia-Alles LF, Santiago GC, Gilleron M, Vasquez A, Choong YS, Reyes F, Norazmi N, Sarmiento ME & Acosta A (2020) A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors. Front Immunol 11:566710.
Layre E. (2020) Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol 11:1230.
Palčeková Z, Gilleron M, Angala SK, Belardinelli JM, McNeil M, Bermudez LE, Jackson M. (2020) Polysaccharide Succinylation Enhances the Intracellular Survival of Mycobacterium abscessus. ACS Infect Dis 6:2235-2248.
Le Moigne V, Roux A-L, Jobart-Malfait A, Blanc L, Chaoui K, Burlet-Schiltz O, Gaillard J-L, Canaan S, Nigou J and Herrmann J-L. (2020) A TLR2-Activating Fraction From Mycobacterium abscessus Rough Variant Demonstrates Vaccine and Diagnostic Potential. Front Cell Infect Microbiol 10:432.
Tonini L, Sadet B, Stella A, Bouyssié D, Nigou J, Burlet-Schiltz O & Rivière M. (2020) Potential Plasticity of the Mannoprotein Repertoire Associated to Mycobacterium tuberculosis Virulence Unveiled by Mass Spectrometry-Based Glycoproteomics. Molecules 25:2348.
Le Moigne V , Raynaud C, Moreau F, Dupont C, Nigou J, Neyrolles O, Kremer L & Herrmann J-L. (2020) Efficacy of Bedaquiline, Alone or in Combination With Imipenem, Against Mycobacterium Abscessus in C3HeB/FeJ Mice. Antimicrob Agents Chemother 64:e00114-20.
Dubé J-Y , McIntosh F, Zarruk JG, David S, Nigou J, & Behr MA. (2020) Synthetic Mycobacterial Molecular Patterns Partially Complete Freund’s Adjuvant. Sci Rep 10:5874.
Bah A, Sanicas M, Nigou J, Guilhot C, Astarie-Dequeker C, & Vergne I. (2020) Lipid virulence factors of Mycobacterium tuberculosis exert a multilayered control of autophagy-related pathways in infected human macrophages. Cells 9:666.
Galais M, Pradel B, Vergne I, Robert-Hebmann V, Espert L, Biard-Piechaczyk M. (2019) LAP (LC3-associated phagocytosis): phagocytosis or autophagy? Médecine/Sciences 35:635-642.
Palčeková Z, Angala SK, Belardinelli JM, Eskandarian HA, Joe M, Brunton R, Rithner C, Jones V, Nigou J, Lowary TL, Gilleron M, McNeil M, Jackson M (2019) Disruption of the SucT acyltransferase in Mycobacterium smegmatis abrogates succinylation of cell envelope polysaccharides. J Biol Chem 294:10325-35.
Souriant S, Balboa L, Dupont M, Pingris K, Kviatcovsky D, Cougoule C, Lastrucci C, Bah A, Gasser R, Poincloux R, Raynaud-Messina B, Al Saati T, Inwentarz S, Poggi S, Moran EJ, Gonzalez-Montaner P, Corti M, Lagane B, Vergne I, Allers C, Kaushal D, Kuroda MJ, del Carmen Sasiain M, Neyrolles O, Maridonneau-Parini I, Lugo-Villarino G, Vérollet C (2019) Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-dependent tunneling nanotube formation in macrophages. Cell Rep 26:P3586.
Shahine A, Reinink P, Reijneveld JF, Gras S, Holzheimer M, Cheng TY, Minnaard AJ, Altman JD, Lenz S, Prandi J, Kubler-Kielb J, Moody DB, Rossjohn J & Van Rhijn I (2019) A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids. Nat Commun 10:56.
Law C.T., Camacho F., Garcia-Alles L.F., Gilleron M., Sarmientol M., Norazmi M.N., Acosta A., Choong Y.S. (2019) Interactions of domain antibody (dAbk11) with Mycobacterium tuberculosis Ac2SGL in complex with CD1b. Tuberculosis 114:9-16.
Dendrimères à terminaison saccharide à visée anti-inflammatoire. Blattes, E., Puzo, G., Prandi, J., Nigou, J., Vercellone, A., Majoral, J.P., Turrin, C.O., Caminade A.M. Patent n° 10 56902 (FR, 31/08/2010), 11764827.9 (EU, 31/08/2011), 13/819872 (USA, 31/08/2011).
Pharmaceutical compositions comprising actinomycete glycerol acyl derivatives antigens, their process of extraction, and their use against tuberculosis. Puzo, G., Layre, E., Gilleron, M., Prandi, J., Stenger, S., De Libero, G. EP20070291249, deposited 12/10/2007, extended 13/10/2008.
Composition pour la prévention et/ou le traitement des maladies associées à la surexpression du TNF et/ou de l’IL12. Quesniaux, V., Gilleron, M., Puzo, G., Nigou, J. FR20060010136, deposited 20/11/2006, extended 20/11/2007.
Sulfoglycolipid antigens, their process of preparation, and their use against tuberculosis. Puzo, G., Prandi, J., Gilleron, M., De Libero, G., Guiard, J., Mori, L., Paoletti, S. EP20070290097, deposited 24/01/2007, extended 13/10/2008.
Sulfoglycolipid antigens, their extraction from Mycobacterium tuberculosis, and their use against tuberculosis. Puzo, G., Gilleron, M., Stenger, S., De Libero, G. EP20030290965, deposited 18/04/2003.